Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 11(3): nwad299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38312383

RESUMO

A digital coding metasurface is a platform connecting the digital space and electromagnetic wave space, and has therefore gained much attention due to its intriguing value in reshaping wireless channels and realizing new communication architectures. Correspondingly, there is an urgent need for electromagnetic information theory that reveals the upper limit of communication capacity and supports the accurate design of metasurface-based communication systems. To this end, we propose a macroscopic model and a statistical model of the digital coding metasurface. The macroscopic model uniformly accommodates both digital and electromagnetic aspects of the meta-atoms and predicts all possible scattered fields of the digital coding metasurface based on a small number of simulations or measurements. Full-wave simulations and experimental results show that the macroscopic model is feasible and accurate. A statistical model is further proposed to correlate the mutual coupling between meta-atoms with covariance and to calculate the entropy of the equivalent currents of digital coding metasurface. These two models can help reconfigurable intelligent surfaces achieve more accurate beamforming and channel estimation, and thus improve signal power and coverage. Moreover, the models will encourage the creation of a precoding codebook in metasurface-based direct digital modulation systems, with the aim of approaching the upper limit of channel capacity. With these two models, the concepts of current space and current entropy, as well as the analysis of information loss from the coding space to wave space, is established for the first time, helping to bridge the gap between the digital world and the physical world, and advancing developments of electromagnetic information theory and new-architecture wireless systems.

2.
Chem Commun (Camb) ; 58(74): 10345-10348, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36039806

RESUMO

The sodium storage mechanism of a GeP5/C composite electrode was revealed. Metallic Ge formed during discharge enhances the electronic conductivity of the electrode, while NaxP mitigates the agglomeration and volume change of Ge in the alloying process. The GeP5 phase is regenerated after recharge along with elemental Ge and P, implying a reversible phase transition of GeP5 during cycling.

3.
Adv Mater ; 31(41): e1904069, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31420926

RESUMO

Metasurfaces are artificially engineered ultrathin structures that can finely tailor and control electromagnetic wavefronts. There is currently a strong interest in exploring their capability to lift some fundamental limitations dictated by Lorentz reciprocity, which have strong implications in communication, heat management, and energy harvesting. Time-varying approaches have emerged as attractive alternatives to conventional schemes relying on magnetic or nonlinear materials, but experimental evidence is currently limited to devices such as circulators and antennas. Here, the recently proposed concept of space-time-coding digital metasurfaces is leveraged to break reciprocity. Moreover, it is shown that such nonreciprocal effects can be controlled dynamically. This approach relies on inducing suitable spatiotemporal phase gradients in a programmable way via digital modulation of the metasurface-elements' phase repsonse, which enable anomalous reflections accompanied by frequency conversions. A prototype operating at microwave frequencies is designed and fabricated for proof-of-concept validation. Measured results are in good agreement with theory, hence providing the first experimental evidence of nonreciprocal reflection effects enabled by space-time-modulated digital metasurfaces. The proposed concept and platform set the stage for "on-demand" realization of nonreciprocal effects, in programmable or reconfigurable fashions, which may find several promising applications, including frequency conversion, Doppler frequency illusion, optical isolation, and unidirectional transmission.

4.
Sci Rep ; 5: 10087, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25976071

RESUMO

By understanding the growth mechanism of nanomaterials, the morphological features of nanostructures can be rationally controlled, thereby achieving the desired physical properties for specific applications. Herein, the growth habits of aluminum nitride (AlN) nanostructures and single crystals synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport process were investigated by transmission electron microscopy. The detailed structural characterizations strongly suggested that the growth of AlN nanostructures including AlN nanowires and nanohelixes follow a sequential and periodic rotation in the growth direction, which is independent of the size and shape of the material. Based on these experimental observations, an helical growth mechanism that may originate from the coeffect of the polar-surface and dislocation-driven growth is proposed, which offers a new insight into the related growth kinetics of low-dimensional AlN structures and will enable the rational design and synthesis of novel AlN nanostructures. Further, with the increase of temperature, the growth process of AlN grains followed the helical growth model.

5.
Nanoscale ; 6(9): 4936-41, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24676099

RESUMO

Bandgap engineering is a common practice for tuning semiconductors for desired physical properties. Although possible strain effects in semiconductors have been investigated for over a half-century, a profound understanding of their influence on energy bands, especially for large elastic strain remains unclear. In this study, a systematic investigation of the transport properties of n-type [0001] ZnO nanowires was performed at room temperature using the in situ scanning tunnelling microscope-transmission electron microscope technique which shows that the transport properties vary with the applied external uniaxial strain. It has been found that the resistance of ZnO nanowires decreases continuously with increasing compressive strain, but increases under increased tensile strain, suggesting piezo-resistive characteristics. A series of near-band-edge emissions were measured and the corresponding variations of bandgaps were obtained during the application of tensile strain of individual ZnO nanowires via cathodoluminescence spectroscopy. From this, a relationship between the changes of energy bandgap and the transport properties, both induced by uniaxial strain, is built.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...